In the triangle AB, AC, the high lines on the sides of AB and AC are CE, BF, D and G respectively, which are the midpoint of EF and BC respectively, so the angle EDG is equal to?
Connecting EG and FG, please observe that triangle EBC and triangle FBC are right angles, and G is the midpoint of BC, so EG= 1/2BC=FG, so EG=FG, then triangle EFG is an isosceles triangle, and EF is the bottom. Since D is the center line of EF, from the combination of the three lines, it can be seen that GD is perpendicular to EF, and the angle EDG is 90 degrees.