Draw first, then draw. Are the chances of winning the lottery equal?

Equality, no matter who smokes first, is fair.

We simply use a general situation to prove it. Suppose there are always n lots, of which m are "medium". The probability of the first person drawing is obviously m/n, so how to calculate the probability of the second person winning?

We know that there are n(n- 1) methods to randomly select two of the n signatures, which is our total sample space. In these arrangements, to ensure that the second person wins the lottery, he has m kinds of lottery methods; In this way, the first person can choose from the remaining n- 1, and then there are m(n- 1) ways to ensure that the second person can draw. Therefore, the "probability of the second person drawing" is m(n- 1)/n(n- 1), which is still equal to m/n.

The order of drawing lots has nothing to do with the result.

In a similar way, it can be proved that from now on, everyone's chance of winning the lottery is m/n.

In fact, this problem has a simpler idea. No matter how these people draw lots, the final result is nothing more than the arrangement and combination of n lots. In this arrangement, no position is more special than other positions, so the possibility of winning the ticket in each position must be equal.